skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Flores-Vergara, Miguel A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The angiosperm seed represents a critical evolutionary breakthrough that has been shown to propel the reproductive success and radiation of flowering plants. Seeds promote the rapid diversification of angiosperms by establishing postzygotic reproductive barriers, such as hybrid seed inviability. While prezygotic barriers to reproduction tend to be transient, postzygotic barriers are often permanent and therefore can play a pivotal role in facilitating speciation. This property of the angiosperm seed is exemplified in the Mimulus genus. In order to further the understanding of the gene regulatory mechanisms important in the Mimulus seed, we performed gene regulatory network (GRN) inference analysis by using time-series RNA-seq data from developing hybrid seeds from a viable cross between Mimulus guttatus and Mimulus pardalis. GRN inference has the capacity to identify active regulatory mechanisms in a sample and highlight genes of potential biological importance. In our case, GRN inference also provided the opportunity to uncover active regulatory relationships and generate a reference set of putative gene regulations. We deployed two GRN inference algorithms—RTP-STAR and KBoost—on three different subsets of our transcriptomic dataset. While the two algorithms yielded GRNs with different regulations and topologies when working with the same data subset, there was still significant overlap in the specific gene regulations they inferred, and they both identified potential novel regulatory mechanisms that warrant further investigation. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. null (Ed.)